A neuro-fuzzy network to generate human-understandable knowledge from data
نویسندگان
چکیده
Neuro-fuzzy networks have been successfully applied to extract knowledge from data in the form of fuzzy rules. However, one drawback with the neuro-fuzzy approach is that the fuzzy rules induced by the learning process are not necessarily understandable. The lack of readability is essentially due to the high dimensionality of the parameter space that leads to excessive flexibility in the modification of parameters during learning. In this paper, to obtain readable knowledge from data, we propose a new neuro-fuzzy model and its learning algorithm that works in a parameter space with reduced dimensionality. The dimensionality of the new parameter space is necessary and sufficient to generate human-understandable fuzzy rules, in the sense formally defined by a set of properties. The learning procedure is based on a gradient descent technique and the proposed model is general enough to be applied to other neuro-fuzzy architectures. Simulation studies on a benchmark and a real-life problem are carried out to embody the idea of the paper. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Controlling structures by inverse adaptive neuro fuzzy inference system and MR dampers
To control structures against wind and earthquake excitations, Adaptive Neuro Fuzzy Inference Systems and Neural Networks are combined in this study. The control scheme consists of an ANFIS inverse model of the structure to assess the control force. Considering existing ANFIS controllers, which require a second controller to generate training data, the authors’ approach does not need anot...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملDiscovering interpretable classification rules from neural processed data
In this paper we describe a neuro-fuzzy model to extract interpretable classification rules from examples. Such model is trained in a parameter subspace where a number of formal properties, which characterize understandable knowledge bases, are satisfied. To deal with the curse of dimensionality problem, which occurs when our model is used in high-dimensional classification tasks, an "A Priori ...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cognitive Systems Research
دوره 3 شماره
صفحات -
تاریخ انتشار 2002